Search results

1 – 4 of 4
Article
Publication date: 12 December 2018

Zili Li, Chao Yang, Gan Cui, Shouxin Zhang and Chengbin Zhang

When hydrogen evolution reaction occurs on a metal surface, on the one hand, the generated hydrogen atom may penetrate into the metal that causes the hydrogen embrittlement…

Abstract

Purpose

When hydrogen evolution reaction occurs on a metal surface, on the one hand, the generated hydrogen atom may penetrate into the metal that causes the hydrogen embrittlement failure of materials; on the other hand, the hydrogen generation may increase the local pressure in the coating and cause coating blistering. The purpose of this study is to study the effect of NaCl concentration and pH on hydrogen evolution reaction of X60 steel.

Design/methodology/approach

A cathodic polarization curve 257E-2V vs OCP and EIS was obtained by conventional three-electrode system in different NaCl concentrations, 257E3.5 and pH. Second, various parameters such as hydrogen evolution, over-potential current–density polarization resistance and capacitance of double electric layer were obtained based on fitting of the experimental data. Finally, the reaction mechanism was determined by Tafel curves.

Findings

It was concluded that in different NaCl concentrations, diffusion layer induced by concentration polarization affects the diffusion process of H+ ions, which makes over-potential increase. Under great effect of concentration polarization, the reaction is different in acid and alkaline environments, and the dielectric layer shows the characteristic of meta-alkaline adsorption, which makes difference in mechanism.

Originality/value

This research not only has theoretical significance but also gains utilization prospect. Ultimately, this research could be applied to clear hydrogen evolution process and protect long-distance pipeline against delamination.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 31 January 2020

JiaYu Zhou, Zili Li, JianGuo Liu, Xiao Xing, Gan Cui, ShouXin Zhang, Ran Cheng and YiShu Wang

The purpose of this paper is to quantify the influence of alternating current (AC) interference on hydrogen evolution reaction of X80 steel.

Abstract

Purpose

The purpose of this paper is to quantify the influence of alternating current (AC) interference on hydrogen evolution reaction of X80 steel.

Design/methodology/approach

The hydrogen evolution potential was obtained by cathodic potentiodynamic polarization curve. The instantaneous potential under AC interference was obtained by high-frequency acquisition with three-electrode system. Electrochemical impedance spectroscopy and Tafel polarization curves were used to study the influence mechanism of AC interference on instantaneous potential.

Findings

It was concluded that the hydrogen evolution reaction could occur on X80 steel under AC interference. There were critical AC current densities of about 100 to 200 A/m2, beyond which the cathode reaction of X80 steel changed from oxygen absorption to hydrogen evolution. Besides the pH value, the initial polarization potential EZ and impedance module of the steel/electrolyte interface under AC interference were also the factors that affected the critical AC densities in different solutions.

Originality/value

This research quantified the hydrogen evolution capacity of X80 steel under AC interference, which could be applied to clear the effect of AC interference on hydrogen evolution reaction.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 23 April 2015

Jijun Zhao, Siyuan Gao, Danping Ren, Zhihua Li and Liang Xue

In this paper, considering a tradeoff between consumers comfort and energy efficiency, a multi-period joint energy scheduling algorithm (MPJ-ESA) based on prediction of residents…

Abstract

In this paper, considering a tradeoff between consumers comfort and energy efficiency, a multi-period joint energy scheduling algorithm (MPJ-ESA) based on prediction of residents energy consumption is proposed, which includes long-period preliminary sch eduling, short-period preliminary scheduling, and real-time fine-tuning scheduling. First, by analyzing historical data of energy consumption, preferred usage profile of consumers is inferred, and the dynamic comfort level is presented. Then the paper uses the wavelet neural networks (WNNs) prediction algorithm to predict the operation of the appliances which are classified into appliances with unschedulable mode and schedulable mode. Based on the energy consumption prediction and dynamic comfort level, home appliances running state are scheduled according to the prediction of renewable energy available amount and real-time pricing (RTP). The simulation results show that scheduling algorithm effectively improves the energy efficiency and enhances user satisfaction with the operation of scheduled appliances and let the consumers comfort and energy efficiency achieve a better tradeoff.

Details

World Journal of Engineering, vol. 12 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 June 2022

Xiuyun Wang, Guofei Cao, Bei Wang, Yunying Xing, Minxu Lu, Lijie Qiao and Lei Zhang

The purpose of this study is to elucidate the effects of electric-arc-induced ablation on the corrosion behavior of pipeline steel in neutral and high pH environments.

Abstract

Purpose

The purpose of this study is to elucidate the effects of electric-arc-induced ablation on the corrosion behavior of pipeline steel in neutral and high pH environments.

Design/methodology/approach

Electrochemical testing, an atmospheric-pressure immersion experiment and various techniques (e.g. scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy) were used to examine the effects of electric-arc-induced ablation on the corrosion behavior of pipeline steel in neutral and high pH environment.

Findings

Electric-arc-induced ablation occurred preferentially in areas of inclusion. The corrosion resistance of an ablation pit was lower than that of non-ablation areas. In the neutral soil solution, general corrosion was the dominant corrosion that affected pipeline steel; the effect of ablation was small but pitting corrosion could still be induced. In a high pH environment, the samples without ablation were passivated, whereas the samples with ablation pits could not be passivated; the ablation pits were likely to develop pitting corrosion.

Originality/value

Electric-arc-induced ablation can reduce the corrosion resistance of pipeline steel under high-voltage direct current interference.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 4 of 4